Photonics (Jun 2022)

Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials

  • Xiaowei Yin,
  • Fengli Liu,
  • Wentao Qiu,
  • Can Liu,
  • Heyuan Guan,
  • Huihui Lu

DOI
https://doi.org/10.3390/photonics9060431
Journal volume & issue
Vol. 9, no. 6
p. 431

Abstract

Read online

This paper presents theoretical studies of Fano resonance based electric-field (E-field) sensors. E-field sensor based on two electro-optical (EO) materials i.e., barium titanate (BaTiO3, BTO) nanoparticles and relaxor ferroelectric material Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) combined with nanostructure are studied. As for the BTO based E-field sensor, a configuration of filling the BTO nanoparticles into a nano-patterned thin film silicon is proposed. The achieved resonance quality factor (Q) is 11,855 and a resonance induced electric field enhancement factor is of around 105. As for the design of PMN-PT based E-field sensor, a configuration by combining two square lattice air holes in PMN-PT thin film but with one offsetting hole left is chosen. The achieved resonance Q is of 9,273 and an electric field enhancement factor is of around 96. The resonance wavelength shift sensitivity of PMN-PT nanostructured can reach up to 4.768 pm/(V/m), while the BTO based nanostructure has a sensitivity of 0.1213 pm/(V/m). If a spectrum analyzer with 0.1 pm resolution is considered, then the minimum detection of the electric field Emin is 20 mV/m and 0.82 V/m for PMN-PT and BTO based nanostructures, respectively. The nano-patterned E-field sensor studied here are all dielectric, it has therefore the advantage of large measurement bandwidth, high measurement fidelity, high spatial resolution and high sensitivity.

Keywords