BMC Cardiovascular Disorders (Sep 2024)
The interaction between neutrophils and atrial myocytes in the occurrence and development of atrial fibrillation
Abstract
Abstract Background Atrial fibrillation (AF) is one of the most prevalent sustained cardiac arrhythmias, strongly associated with neutrophils. However, the underlying mechanism remain unclear. This study aims to explore the interaction between neutrophils and atrial myocytes in the pathogenesis of AF. Methods Patch-clamp was employed to record the action potential duration (APD) and ion channels in HL-1 cells. Flow cytometry was used to assess the differentiation of neutrophils. The mRNA and protein levels of CACNA1C, CACNA2D, and CACNB2 in HL-1 cells were detected. Results High-frequency electrical stimulation resulted in a shortening of the APD in HL-1 cells. Flow cytometry demonstrated that neutrophils were polarized into N1 phenotype when cultured with stimulated HL-1 cells medium. Compared to control neutrophils conditioned medium (CM), cocultured with TNF-α knockout neutrophils CM prolonged APD and the L-type Ca (2+) channel (LTCC) of HL-1 cells. Additionally, the expression of CACNA2D, CACNB2 and CACNA1C in HL-1 cells were upregulated. Compared with CACNA1C siRNA-transfected HL-1 cells treated with TNF-α siRNA-transfected neutrophils CM, the APD and LTCC of CACNA1C siRNA-transfected HL-1 cells were shortened in control N1 neutrophil CM. The APD and LTCC of control HL-1 cells were also shortened in control N1 neutrophil CM, but prolonged in TNF-α siRNA-transfected neutrophils CM. Conclusion These findings suggest that neutrophils were polarized into N1 phenotype in AF, TNF-α released from N1 neutrophils contributes to the pathogenesis of AF, via decreasing the APD and LTCC in atrial myocytes through down-regulation of CACNA1C expression.
Keywords