Проблемы анализа (Feb 2023)

VARIABLE LEBESGUE ALGEBRA ON A LOCALLY COMPACT GROUP

  • P. Saha,
  • B. Hazarika

DOI
https://doi.org/10.15393/j3.art.2023.12110
Journal volume & issue
Vol. 12 (30), no. 1
pp. 34 – 45

Abstract

Read online

For a locally compact group 𝐻 with a left Haar measure, we study the variable Lebesgue algebra L^(p(.))(𝐻) with respect to convolution. We show that if L^(p(.))(𝐻) has a bounded exponent, then it contains a left approximate identity. We also prove a necessary and sufficient condition for L^(p(.))(𝐻) to have an identity. We observe that a closed linear subspace of L^(p(.))(𝐻) is a left ideal if and only if it is left translation invariant.

Keywords