Materials (Mar 2018)

Patternable Poly(chloro-p-xylylene) Film with Tunable Surface Wettability Prepared by Temperature and Humidity Treatment on a Polydimethylsiloxane/Silica Coating

  • Yonglian Yu,
  • Hong Shao,
  • Zhoukun He,
  • Changyu Tang,
  • Jian Yang,
  • Yongsheng Li,
  • Cong Wang,
  • Xiuyun Li,
  • Maobing Shuai,
  • Jun Mei

DOI
https://doi.org/10.3390/ma11040486
Journal volume & issue
Vol. 11, no. 4
p. 486

Abstract

Read online

Poly(chloro-p-xylylene) (PPXC) film has a water contact angle (WCA) of only about 84°. It is necessary to improve its hydrophobicity to prevent liquid water droplets from corroding or electrically shorting metallic circuits of semiconductor devices, sensors, microelectronics, and so on. Herein, we reported a facile approach to improve its surface hydrophobicity by varying surface pattern structures under different temperature and relative humidity (RH) conditions on a thermal curable polydimethylsiloxane (PDMS) and hydrophobic silica (SiO2) nanoparticle coating. Three distinct large-scale surface patterns were obtained mainly depending on the contents of SiO2 nanoparticles. The regularity of patterns was mainly controlled by the temperature and RH conditions. By changing the pattern structures, the surface wettability of PPXC film could be improved and its WCA was increased from 84° to 168°, displaying a superhydrophobic state. Meanwhile, it could be observed that water droplets on PPXC film with superhydrophobicity were transited from a “Wenzel” state to a “Cassie” state. The PPXC film with different surface patterns of 200 μm × 200 μm and the improved surface hydrophobicity showed wide application potentials in self-cleaning, electronic engineering, micro-contact printing, cell biology, and tissue engineering.

Keywords