AIMS Mathematics (Apr 2024)
Efficient spectral collocation method for nonlinear systems of fractional pantograph delay differential equations
Abstract
Caputo-Hadamard-type fractional calculus involves the logarithmic function of an arbitrary exponent as its convolutional kernel, which causes challenges in numerical approximations. In this paper, we construct and analyze a spectral collocation approach using mapped Jacobi functions as basis functions and construct an efficient algorithm to solve systems of fractional pantograph delay differential equations involving Caputo-Hadamard fractional derivatives. What we study is the error estimates of the derived method. In addition, we tabulate numerical results to support our theoretical analysis.
Keywords