Plants (Feb 2023)

The Rootstock Genotypes Determine Drought Tolerance by Regulating Aquaporin Expression at the Transcript Level and Phytohormone Balance

  • David Labarga,
  • Andreu Mairata,
  • Miguel Puelles,
  • Ignacio Martín,
  • Alfonso Albacete,
  • Enrique García-Escudero,
  • Alicia Pou

DOI
https://doi.org/10.3390/plants12040718
Journal volume & issue
Vol. 12, no. 4
p. 718

Abstract

Read online

Grapevine rootstocks may supply water to the scion according to the transpiration demand, thus modulating plant responses to water deficit, but the scion variety can alter these responses, as well. The rootstock genotypes’ effect on the scion physiological response, aquaporin expression, and hormone concentrations in the xylem and the leaf was assessed under well watered (WW) and water stress (WS) conditions. Under WW, vines grafted onto 1103P and R110 rootstocks (the more vigorous and drought-tolerant) showed higher photosynthesis (AN), stomatal conductance (gs), and hydraulic conductance (Khplant) compared with the less vigorous and drought-sensitive rootstock (161-49C), while under WS, there were hardly any differences between vines depending on the rootstock grafted. Besides, stomatal traits were affected by drought, which was related to gs, but not by the rootstock. Under WS conditions, all VvPIP and VvTIP aquaporins were up-regulated in the vines grafted onto 1103P and down-regulated in the ones grafted onto 161-49C. The 1103P capability to tolerate drought was enhanced by the up-regulation of all VvPIP and VvTIP aquaporins, lower ABA synthesis, and higher ACC/ABA ratios in leaves during WS compared with 161-49C. It was concluded that, under WW conditions, transpiration and stomatal control were rootstock-dependent. However, under WS conditions, alterations in the molecular components of water transport and hormone concentration of the scion resulted in similar gas exchange values in the studied scions grafted onto different rootstocks.

Keywords