Journal of Mahani Mathematical Research (Nov 2023)
Schur multiplier operator and matrix inequalities
Abstract
In this note we obtain a reverse version of the Haagerup Theorem. In particular, if $ A \in \mathbb{M}_{n}$ has a $ 2\times2- $ principal submatrix as $ \left[ \begin{array}{cc}1& \alpha \\\beta & 1\\\end{array}\right]$ with $ \beta \neq \bar{\alpha}, $ then $ \Vert S_{A} \Vert > 1$ where the operator $ S_{A}:\mathbb{M}_{n}\longrightarrow \mathbb{M}_{n} $ is defined by $S_{A}(B) := A \circ B $ where $ "\circ " $ stands for Schur product.
Keywords