Frontiers in Veterinary Science (Nov 2024)

Assessing functional properties of diet protein hydrolysate and oil from fish waste on canine immune parameters, cardiac biomarkers, and fecal microbiota

  • Ana R. J. Cabrita,
  • Carolina Barroso,
  • Ana Patrícia Fontes-Sousa,
  • Alexandra Correia,
  • Alexandra Correia,
  • Luzia Teixeira,
  • Luzia Teixeira,
  • Margarida R. G. Maia,
  • Manuel Vilanova,
  • Manuel Vilanova,
  • Timur Yergaliyev,
  • Timur Yergaliyev,
  • Amélia Camarinha-Silva,
  • Amélia Camarinha-Silva,
  • António J. M. Fonseca

DOI
https://doi.org/10.3389/fvets.2024.1449141
Journal volume & issue
Vol. 11

Abstract

Read online

Locally produced fish hydrolysate and oil from the agrifood sector comprises a sustainable solution both to the problem of fish waste disposal and to the petfood sector with potential benefits for the animal’s health. This study evaluated the effects of the dietary replacement of mainly imported shrimp hydrolysate (5%) and salmon oil (3%; control diet) with locally produced fish hydrolysate (5%) and oil (3.2%) obtained from fish waste (experimental diet) on systemic inflammation markers, adipokines levels, cardiac function and fecal microbiota of adult dogs. Samples and measurements were taken from a feeding trial conducted according to a crossover design with two diets (control and experimental diets), six adult Beagle dogs per diet and two periods of 6 weeks each. The experimental diet, with higher docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids contents, decreased plasmatic triglycerides and the activity of angiotensin converting enzyme, also tending to decrease total cholesterol. No effects of diet were observed on serum levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-8, and IL-12/IL-23 p40, and of the serum levels of the anti-inflammatory adipokine adiponectin. Blood pressure, heart rate and echocardiographic measurements were similar between diets with the only exception of left atrial to aorta diameter ratio that was higher in dogs fed the experimental diet, but without clinical relevance. Diet did not significantly affect fecal immunoglobulin A concentration. Regarding fecal microbiome, Megasphaera was the most abundant genus, followed by Bifidobacterium, Fusobacterium, and Prevotella, being the relative abundances of Fusobacterium and Ileibacterium genera positively affected by the experimental diet. Overall, results from the performed short term trial suggest that shrimp hydrolysate and salmon oil can be replaced by protein hydrolysate and oil from fish by-products without affecting systemic inflammatory markers, cardiac structure and function, but potentially benefiting bacterial genera associated with healthy microbiome. Considering the high DHA and EPA contents and the antioxidant properties of fish oil and hydrolysate, it would be worthwhile in the future to assess their long-term effects on inflammatory markers and their role in spontaneous canine cardiac diseases and to perform metabolomic and metagenomics analysis to elucidate the relevance of microbiota changes in the gut.

Keywords