Journal of High Energy Physics (Aug 2024)
What can abelian gauge theories teach us about kinematic algebras?
Abstract
Abstract The phenomenon of BCJ duality implies that gauge theories possess an abstract kinematic algebra, mirroring the non-abelian Lie algebra underlying the colour information. Although the nature of the kinematic algebra is known in certain cases, a full understanding is missing for arbitrary non-abelian gauge theories, such that one typically works outwards from well-known examples. In this paper, we pursue an orthogonal approach, and argue that simpler abelian gauge theories can be used as a testing ground for clarifying our understanding of kinematic algebras. We first describe how classes of abelian gauge fields are associated with well-defined subalgebras of the diffeomorphism algebra. By considering certain special subalgebras, we show that one may construct interacting theories, whose kinematic algebras are inherited from those already appearing in a related abelian theory. Known properties of (anti-)self-dual Yang-Mills theory arise in this way, but so do new generalisations, including self-dual electromagnetism coupled to scalar matter. Furthermore, a recently obtained non-abelian generalisation of the Navier-Stokes equation fits into a similar scheme, as does Chern-Simons theory. Our results provide useful input to further conceptual studies of kinematic algebras.
Keywords