International Journal of Industrial Engineering Computations (Jan 2023)

Collaborative scheduling of machining-assembly in complex multiple parallel production lines environment considering kitting constraints

  • Guangyan Xu,
  • Zailin Guan,
  • Kai Peng,
  • Lei Yue

DOI
https://doi.org/10.5267/j.ijiec.2023.7.003
Journal volume & issue
Vol. 14, no. 4
pp. 749 – 766

Abstract

Read online

In multi-stage machining-assembly production, collaborative scheduling for multiple production lines can effectively improve the execution efficiency of production planning and increase the effective output of the production system. In this paper, a production scheduling mathematical model was constructed for the collaborative scheduling problem of machining-assembly multi-production lines with kitting constraints, with the optimization objectives of minimizing assembly completion time and tardiness time. For the scheduling model, the product assembly process is constrained by the machining sequence of the jobs on the machining lines. Only by collaborating on the production scheduling schemes of the machine line and the assembly line as a whole can the output efficiency of the product on the assembly line be improved. An improved hybrid multi-objective optimization algorithm named SMOEA/D is designed to solve this scheduling model. The algorithm uses adaptive parents’ selection and mutation rate strategies and integrates the Tabu search strategy for the search process in the solution space when the solution of the sub-problem has not been improved after specified search generations, to improve the local search ability and search accuracy of MOEA/D algorithm. To verify the performance of the SMOEA/D algorithm in solving machining-assembly collaborative scheduling problems in production systems with different resource configurations and scales, two sets of numerical experiments were designed, corresponding to situations where the number of operations on each production line is equal or unequal. The running results of the proposed algorithm were compared with three other well-known multi-objective algorithms. The comparison results indicate that the SMOEA/D algorithm is effective and superior for solving such problems.