Baghdad Science Journal (Mar 2021)
Smart Flow Steering Agent for End-to-End Delay Improvement in Software-Defined Networks
Abstract
To ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distributes network traffic to suitable paths, in addition to supervising link and path loads. A scenario with a minimum spanning tree (MST) routing algorithm and another with open shortest path first (OSPF) routing algorithms were employed to assess the SFSA. By comparison, to these two routing algorithms, the suggested SFSA strategy determined a reduction of 2% in packets dropped ratio (PDR), a reduction of 15-45% in end-to-end delay according to the traffic produced, as well as a reduction of 23% in round trip time (RTT). The Mininet emulator and POX controller were employed to conduct the simulation. Another advantage of the SFSA over the MST and OSPF is that its implementation and recovery time do not exhibit fluctuations. The smart flow steering agent will open a new horizon for deploying new smart agents in SDN that enhance network programmability and management.
Keywords