Lipids in Health and Disease (Jan 2022)

Molecular mechanism of benzo [a] pyrene regulating lipid metabolism via aryl hydrocarbon receptor

  • Wei Lou,
  • Meng-di Zhang,
  • Qi Chen,
  • Tu-Ya Bai,
  • Yu-Xia Hu,
  • Feng Gao,
  • Jun Li,
  • Xiao-Li Lv,
  • Qian Zhang,
  • Fu-Hou Chang

DOI
https://doi.org/10.1186/s12944-022-01627-9
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Benzo [a] pyrene (BaP), a potent carcinogen, has been proved that it has toxicological effects via activation the aryl hydrocarbon receptor (AhR) pathway. AhR can participate in regulating lipogenesis and lipolysis. This topic will verify whether BaP regulates lipid metabolism via AhR. Methods (1) C57BL/6 mice were gavaged with BaP for 12 weeks to detect serum lipids, glucose tolerance, and insulin resistance. Morphological changes in white adipose tissue (WAT) were detected by Hematoxylin and Eosin staining. The mRNA expression levels of adipogenesis-related factors included recombinant human CCAAT/enhancer binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid binding protein 4 (FABP4) and inflammatory factors included nuclear factor kappa-B (NF-κB), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α) were detected using PCR. (2) Neutral lipid content changes in differentiated 3 T3-L1 adipocytes treated with BaP with and w/o AhR inhibitor were detected by Oil red staining. The protein expression levels of adipogenesis- and decomposition-related factors included PPARγ coactivator-1 alpha (PGC-1α), and peroxisome proliferation-activated receptor alpha (PPARα) were detected using western blotting. The mRNA expression levels of inflammatory factors were detected using PCR. Results (1) BaP inhibited body weight gain, decreased lipid content, increased lipid levels, and decreased glucose tolerance and insulin tolerance in mice; (2) BaP reduced the expressions of C/EBPα, PPARγ, FABP4, PGC-1α, and PPARα and increased the expressions of NF-κB, MCP-1, and TNF-α by activating AhR. Conclusion BaP inhibit fat synthesis and oxidation while inducing inflammation by activating AhR, leading to WAT dysfunction and causing metabolic complications.

Keywords