BMC Genomics (May 2022)

Evolution and dispersal of mitochondrial DNA haplogroup U5 in Northern Europe: insights from an unsupervised learning approach to phylogeography

  • Dana Kristjansson,
  • Jon Bohlin,
  • Truc Trung Nguyen,
  • Astanand Jugessur,
  • Theodore G. Schurr

DOI
https://doi.org/10.1186/s12864-022-08572-y
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 25

Abstract

Read online

Abstract Background We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5, which appears at high frequencies in northern Europe. Methods Haplogroup U5 mitogenome sequences were gathered from GenBank. The hierarchal Bayesian Analysis of Population Structure (hierBAPS) method was used to generate groups of sequences that were then projected onto a rooted maximum likelihood (ML) phylogenetic tree to visualize the pattern of clustering. The haplogroup statuses of the individual sequences were assessed using Haplogrep2. Results A total of 23 hierBAPS groups were identified, all of which corresponded to subclades defined in Phylotree, v.17. The hierBAPS groups projected onto the ML phylogeny accurately clustered all haplotypes belonging to a specific haplogroup in accordance with Haplogrep2. By incorporating the geographic source of each sequence and subclade age estimates into this framework, inferences about the diversification of U5 mtDNAs were made. Haplogroup U5 has been present in northern Europe since the Mesolithic, and spread in both eastern and western directions, undergoing significant diversification within Scandinavia. A review of historical and archeological evidence attests to some of the population interactions contributing to this pattern. Conclusions The hierBAPS algorithm accurately grouped mitogenome sequences into subclades in a phylogenetically robust manner. This analysis provided new insights into the phylogeographic structure of haplogroup U5 diversity in northern Europe, revealing a detailed perspective on the diversity of subclades in this region and their distribution in Scandinavian populations.

Keywords