Geo-spatial Information Science (Aug 2024)

A multi-scale attributes fusion model for travel mode identification using GPS trajectories

  • Kunkun Fan,
  • Daichao Li,
  • Xinlei Jin,
  • Sheng Wu

DOI
https://doi.org/10.1080/10095020.2024.2381602

Abstract

Read online

Travel mode recognition is a key issue in urban planning and transportation research. While traditional travel surveys use manual data collection and have limited coverage, poor timeliness, and insufficient sample capacity, recent advancements in Global Positioning System (GPS) technology allow large-scale data collection and offer novel opportunities to enhance travel mode recognition. However, existing studies often neglect regular differences and changes in motion states across different travel modes and fail to fully integrate multi-scale spatio-temporal features, which limits the accurate classification of travel modes. To fill this gap, this study proposes a multi-scale spatio-temporal attribute fusion (MSAF) model for precise travel mode identification using solely GPS trajectories without altering their sampling rate. The MSAF model segments GPS trajectories into various temporal and spatial scales, extracting local motion states and spatial features at multiple scales. The spatio-temporal feature extraction module is constructed to extract local motion states and capture spatio-temporal dependencies. Additionally, the model incorporates a multi-scale feature fusion module, which effectively combines features of various scales through a series of fusion techniques to obtain a comprehensive representation, enabling automatic and accurate travel mode identification. Experiments on real-world datasets, including the GeoLife Trajectories dataset and the Sussex-Huawei Locomotion-Transportation (SHL) dataset, demonstrate the effectiveness of the MSAF model, achieving a competitive accuracy of 95.16% and 91.70%. This represents an improvement of 2.50% to 7.95% and 0.8% to 6.62% over several state-of-the-art baselines, effectively addressing sample imbalance challenges. Moreover, the experiments demonstrate the significant role of multiscale feature fusion in improving model performance.

Keywords