Applied Sciences (Jun 2020)
Combination of Different Approaches to Infer Local or Regional Contributions to PM<sub>2.5</sub> Burdens in Graz, Austria
Abstract
In early 2017 high particulate matter (PM) levels were observed across mid-Europe, including Austria. Here we characterize PM pollution in the city of Graz during January to March 2017, a period with substantial exceedances (34 days) of the European Union (EU) PM10 short time limit value. This study evaluates whether the observed exceedances can be attributed to the accumulation of pollutants emitted by local sources or to a larger scale pollution episode including transport. The analyses are based on the ratios of PM10 concentrations determined at an urban and background site, and the analyses of chemical composition of PM2.5 samples (i.e., water soluble ions, organic and elemental carbon, anhydro-sugars, humic-like substances, aluminum, and polycyclic aromatic hydrocarbons). Source apportionment was realized using a macro-tracer model. Overall, the combination of different approaches (PM10 ratios, chemical composition, and macro-tracer derived source apportionment) enabled a conclusive identification of time periods characterized by the accumulation of emissions from local sources or regional pollution episodes.
Keywords