PLoS ONE (Jan 2021)

Blood pressure variability and night-time dipping assessed by 24-hour ambulatory monitoring: Cross-sectional association with cardiac structure in adolescents.

  • Lucy J Goudswaard,
  • Sean Harrison,
  • Daniel Van De Klee,
  • Nishi Chaturvedi,
  • Debbie A Lawlor,
  • George Davey Smith,
  • Alun D Hughes,
  • Laura D Howe

DOI
https://doi.org/10.1371/journal.pone.0253196
Journal volume & issue
Vol. 16, no. 6
p. e0253196

Abstract

Read online

Greater blood pressure (BP) is associated with greater left ventricular mass indexed to height2.7 (LVMi2.7) in adolescents. This study examined whether greater BP variability and reduced night-time dipping are associated with cardiac remodeling in a general population of adolescents. A cross-sectional analysis was undertaken in 587 UK adolescents (mean age 17.7 years; 43.1% male). BP was measured in a research clinic and using 24-hour ambulatory monitoring. We examined associations (for both systolic and diastolic BP) of: 1) clinic and 24-hour mean BP; 2) measures of 24-hour BP variability: standard deviation weighted for day/night (SDdn), variability independent of the mean (VIM) and average real variability (ARV); and 3) night-time dipping with cardiac structures. Cardiac structures were assessed by echocardiography: 1) LVMi2.7; 2) relative wall thickness (RWT); 3) left atrial diameter indexed to height (LADi) and 4) left ventricular internal diameter in diastole (LVIDD). Higher systolic BP was associated with greater LVMi2.7. Systolic and diastolic BP were associated with greater RWT. Associations were inconsistent for LADi and LVIDD. There was evidence for associations between both greater SDdn and ARV and higher RWT (per 1 SD higher diastolic ARV, mean difference in RWT was 0.13 SDs, 95% CI 0.045 to 0.21); these associations with RWT remained after adjustment for mean BP. There was no consistent evidence of associations between night-time dipping and cardiac structure. Measurement of BP variability, even in adolescents with blood pressure in the physiologic range, might benefit risk of cardiovascular remodeling assessment.