Journal of Advanced Ceramics (Feb 2023)

Mechanical property enhancements and amorphous thermal transports of ordered weberite-type RE3Nb/TaO7 high-entropy oxides

  • Lin Chen,
  • Keren Luo,
  • Baihui Li,
  • Mingyu Hu,
  • Jing Feng

DOI
https://doi.org/10.26599/JAC.2023.9220693
Journal volume & issue
Vol. 12, no. 2
pp. 399 – 413

Abstract

Read online

A3BO7-type (A = rare earth (RE), B = Nb or Ta) oxides have been studied as protective coating materials because of their low thermal conductivity; however, their hardness, toughness, and stiffness are insufficient, particularly for members with webeirte-type structures. In this work, we have synthesized two high-entropy oxides (HEOs) of weberite-type RE niobates/tantalates (RE3Nb/TaO7), i.e., (Nd1/7Sm1/7Eu1/7Gd1/7Dy1/7Ho1/7Er1/7)3NbO7 (7HEOs-Nb) and (Nd1/7Sm1/7Eu1/7Gd1/7Dy1/7Ho1/7Er1/7)3(Nb1/2Ta1/2)O7 (7HEOs-NbTa), to overcome the mechanical deficiencies. The short- and long-range ordered arrangements of RE cations in the A-site and Nb/Ta cations in the B-site were identified by the X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive spectrometry (EDS), and transmission electron microscopy. The enhancements in hardness (H = 9.4 GPa) and fracture toughness (KIC = 2.0 MPa·m1/2) were realized by grain refinement, solid solution strengthening, and high stiffness (K). The exceptional phase stability at 25−1500 ℃, amorphous thermal conductivity (k = 1.5−1.7 W·m−1·K−1 at 25−900 ℃), and high thermal expansion coefficients (TEC > 11.0×10−6 K−1 at 1500 ℃) further supported their potential application as protective coating materials.

Keywords