Energies (Dec 2021)

XGBoost-Based Day-Ahead Load Forecasting Algorithm Considering Behind-the-Meter Solar PV Generation

  • Dong-Jin Bae,
  • Bo-Sung Kwon,
  • Kyung-Bin Song

DOI
https://doi.org/10.3390/en15010128
Journal volume & issue
Vol. 15, no. 1
p. 128

Abstract

Read online

With the rapid expansion of renewable energy, the penetration rate of behind-the-meter (BTM) solar photovoltaic (PV) generators is increasing in South Korea. The BTM solar PV generation is not metered in real-time, distorts the electric load and increases the errors of load forecasting. In order to overcome the problems caused by the impact of BTM solar PV generation, an extreme gradient boosting (XGBoost) load forecasting algorithm is proposed. The capacity of the BTM solar PV generators is estimated based on an investigation of the deviation of load using a grid search. The influence of external factors was considered by using the fluctuation of the load used by lighting appliances and data filtering based on base temperature, as a result, the capacity of the BTM solar PV generators is accurately estimated. The distortion of electric load is eliminated by the reconstituted load method that adds the estimated BTM solar PV generation to the electric load, and the load forecasting is conducted using the XGBoost model. Case studies are performed to demonstrate the accuracy of prediction for the proposed method. The accuracy of the proposed algorithm was improved by 21% and 29% in 2019 and 2020, respectively, compared with the MAPE of the LSTM model that does not reflect the impact of BTM solar PV.

Keywords