Sustainable Chemistry (Mar 2022)
Effect of Na Doping on the Electrochemical Performance of Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub> Cathode for Lithium-Ion Batteries
Abstract
This study aims to investigate the effect of Na doping on the structure, electrical, and electrochemical properties of lithium-rich cathode material. Pristine Li1.2Ni0.13Mn0.54Co0.13O2 (LNMC) and Na-doped Li1.17Na0.03Ni0.13Mn0.54Co0.13O2 (Na-LNMC) layered lithium-rich/manganese-rich compounds are prepared by the sol-gel method. The structural and morphological characterization reveals that the Na doping leads to an ordered structure with regular cubic morphology and enlarged Li layer spacing. This enlargement facilitates the diffusion of lithium ion inside the bulk lattice. Electrochemical impedance spectroscopy (EIS) shows that doping by a small amount of Na (3 mol%) decreases the impedance by more than three orders of magnitude and enhances the diffusion of lithium ions in the same proportion. This remarkable improvement in the conductivity and diffusion coefficient of lithium ions of Na-LNMC improves its capacity retention. In addition, this structure and mode of preparation results in “U-shaped” capacity vs. cycle curves, similar to the curves observed for transition metal oxide electrodes, resulting in an exceptional cycle life, tested for up to 400 cycles at 2C.
Keywords