Geoscientific Model Development (Dec 2017)
DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
- P. A. Ullrich,
- C. Jablonowski,
- J. Kent,
- P. H. Lauritzen,
- R. Nair,
- K. A. Reed,
- C. M. Zarzycki,
- D. M. Hall,
- D. Dazlich,
- R. Heikes,
- C. Konor,
- D. Randall,
- T. Dubos,
- Y. Meurdesoif,
- X. Chen,
- L. Harris,
- C. Kühnlein,
- V. Lee,
- A. Qaddouri,
- C. Girard,
- M. Giorgetta,
- D. Reinert,
- J. Klemp,
- S.-H. Park,
- W. Skamarock,
- H. Miura,
- T. Ohno,
- R. Yoshida,
- R. Walko,
- A. Reinecke,
- K. Viner
Affiliations
- P. A. Ullrich
- University of California, Davis, Davis, CA, USA
- C. Jablonowski
- University of Michigan, Ann Arbor, MI, USA
- J. Kent
- University of South Wales, Pontypridd, Wales, UK
- P. H. Lauritzen
- National Center for Atmospheric Research, Boulder, CO, USA
- R. Nair
- National Center for Atmospheric Research, Boulder, CO, USA
- K. A. Reed
- Stony Brook University, Stony Brook, NY, USA
- C. M. Zarzycki
- National Center for Atmospheric Research, Boulder, CO, USA
- D. M. Hall
- University of Colorado, Boulder, Boulder, CO, USA
- D. Dazlich
- Colorado State University, Fort Collins, CO, USA
- R. Heikes
- Colorado State University, Fort Collins, CO, USA
- C. Konor
- Colorado State University, Fort Collins, CO, USA
- D. Randall
- Colorado State University, Fort Collins, CO, USA
- T. Dubos
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace (IPSL), Paris, France
- Y. Meurdesoif
- Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace (IPSL), Paris, France
- X. Chen
- Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA
- L. Harris
- Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA
- C. Kühnlein
- European Center for Medium-Range Weather Forecasting (ECMWF), Reading, UK
- V. Lee
- Environment and Climate Change Canada (ECCC), Dorval, Québec, Canada
- A. Qaddouri
- Environment and Climate Change Canada (ECCC), Dorval, Québec, Canada
- C. Girard
- Environment and Climate Change Canada (ECCC), Dorval, Québec, Canada
- M. Giorgetta
- Max Planck Institute for Meteorology, Hamburg, Germany
- D. Reinert
- Deutscher Wetterdienst (DWD), Offenbach am Main, Germany
- J. Klemp
- National Center for Atmospheric Research, Boulder, CO, USA
- S.-H. Park
- Yonsei University, Seoul, South Korea
- W. Skamarock
- National Center for Atmospheric Research, Boulder, CO, USA
- H. Miura
- University of Tokyo, Bunkyo, Tokyo, Japan
- T. Ohno
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan
- R. Yoshida
- RIKEN AICS/Kobe University, Kobe, Japan
- R. Walko
- University of Miami, Coral Gables, FL, USA
- A. Reinecke
- Naval Research Laboratory, Monterey, CA, USA
- K. Viner
- Naval Research Laboratory, Monterey, CA, USA
- DOI
- https://doi.org/10.5194/gmd-10-4477-2017
- Journal volume & issue
-
Vol. 10
pp. 4477 – 4509
Abstract
Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.