Applied Sciences (Jul 2020)

An Inspection Robot for Belt Conveyor Maintenance in Underground Mine—Infrared Thermography for Overheated Idlers Detection

  • Jarosław Szrek,
  • Jacek Wodecki,
  • Ryszard Błażej,
  • Radoslaw Zimroz

DOI
https://doi.org/10.3390/app10144984
Journal volume & issue
Vol. 10, no. 14
p. 4984

Abstract

Read online

It is well known that mechanical systems require supervision and maintenance procedures. There are a lot of condition monitoring techniques that are commonly used, and in the era of IoT and predictive maintenance one may find plenty of solutions for various applications. Unfortunately in the case of belt conveyors used in underground mining a list of possible solutions shrinks quickly. The reason is that they are specific mechanical systems—the typical conveyor is located in the mining tunnel and its length may vary between 100 and 1000 m. According to mining regulations, visual inspection of the conveyor route should be done before it will start the operation. On the other hand, since environmental conditions in mining tunnels are extremely harsh and the risk of accidents is high, there is a tendency to minimize human presence in the tunnels. In this paper, we propose a prototype of an inspection robot based on a UGV platform that could support maintenance staff during the inspection. At present, the robot is controlled by an operator using radio however, we plan to make it autonomous. Moreover, its support could be significant—the robot can “see” elements of the conveyor route (RGB camera) and can identify hot spots using infrared thermography. Moreover, the detected hot spots could be localized and its position can be stored together with both types of images. In parallel, it is possible to preview images in a real-time and stored data allow analysing state of conveyor system after the inspection mission. It is also important that due to radio control systems, an operator can stay in a safe place. Such a robot can be classified as a mobile monitoring system for spatially distributed underground infrastructure.

Keywords