Vaccines (Mar 2021)
Zika E Glycan Loop Region and Guillain–Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to Be Taken in Account for Vaccine Development
Abstract
The neurological complications of infection by the mosquito-borne Zika virus (ZIKV) include Guillain–Barré syndrome (GBS), an acute inflammatory demyelinating polyneuritis. GBS was first associated with recent ZIKV epidemics caused by the emergence of the ZIKV Asian lineage in South Pacific. Here, we hypothesize that ZIKV-associated GBS relates to a molecular mimicry between viral envelope E (E) protein and neural proteins involved in GBS. The analysis of the ZIKV epidemic strains showed that the glycan loop (GL) region of the E protein includes an IVNDT motif which is conserved in voltage-dependent L-type calcium channel subunit alpha-1C (Cav1.2) and Heat Shock 70 kDa protein 12A (HSP70 12A). Both VSCC-alpha 1C and HSP70 12A belong to protein families which have been associated with neurological autoimmune diseases in central nervous system. The purpose of our in silico analysis is to point out that IVNDT motif of ZIKV E-GL region should be taken in consideration for the development of safe and effective anti-Zika vaccines by precluding the possibility of adverse neurologic events including autoimmune diseases such as GBS through a potent mimicry with Heat Shock 70 kDa protein 12A (HSP70 12A).
Keywords