PLoS ONE (Jan 2013)

protective effect of tetracycline against dermal toxicity induced by Jellyfish venom.

  • Changkeun Kang,
  • Yeung Bae Jin,
  • Jeongsoo Kwak,
  • Hongseok Jung,
  • Won Duk Yoon,
  • Tae-Jin Yoon,
  • Jong-Shu Kim,
  • Euikyung Kim

DOI
https://doi.org/10.1371/journal.pone.0057658
Journal volume & issue
Vol. 8, no. 3
p. e57658

Abstract

Read online

BACKGROUND: Previously, we have reported that most, if not all, of the Scyphozoan jellyfish venoms contain multiple components of metalloproteinases, which apparently linked to the venom toxicity. Further, it is also well known that there is a positive correlation between the inflammatory reaction of dermal tissues and their tissue metalloproteinase activity. Based on these, the use of metalloproteinase inhibitors appears to be a promising therapeutic alternative for the treatment of jellyfish envenomation. METHODOLOGY AND PRINCIPAL FINDINGS: Tetracycline (a metalloproteinase inhibitor) has been examined for its activity to reduce or prevent the dermal toxicity induced by Nemopilema nomurai (Scyphozoa: Rhizostomeae) jellyfish venom (NnV) using in vitro and in vivo models. HaCaT (human keratinocyte) and NIH3T3 (mouse fibroblast) incubated with NnV showed decreases in cell viability, which is associated with the inductions of metalloproteinase-2 and -9. This result suggests that the use of metalloproteinase inhibitors, such as tetracycline, may prevent the jellyfish venom-mediated local tissue damage. In vivo experiments showed that comparing with NnV-alone treatment, tetracycline pre-mixed NnV demonstrated a significantly reduced progression of dermal toxicity upon the inoculation onto rabbit skin. CONCLUSIONS/SIGNIFICANCE: It is believed that there has been no previous report on the therapeutic agent of synthetic chemical origin for the treatment of jellyfish venom-induced dermonecrosis based on understanding its mechanism of action except the use of antivenom treatment. Furthermore, the current study, for the first time, has proposed a novel mechanism-based therapeutic intervention for skin damages caused by jellyfish stings.