Fire (Feb 2023)

Kinetic Study of Pyrolysis of Coniferous Bark Wood and Modified Fir Bark Wood

  • Olga Yu. Fetisova,
  • Nadezhda M. Mikova,
  • Anna I. Chudina,
  • Aleksandr S. Kazachenko

DOI
https://doi.org/10.3390/fire6020059
Journal volume & issue
Vol. 6, no. 2
p. 59

Abstract

Read online

We report on the kinetics of pyrolysis of bark wood of four coniferous tree species: fir (Abies sibirica), larch (Larix sibirica), spruce (Picea obovata), and cedar (Pinus sibirica) denoted as FB, LB, SB, and CB, respectively. Thermogravimetry (TG) and differential scanning calorimetry (DSC) methods were used to study the influence of KCl and K3PO4 compounds on the process of thermal decomposition of fir bark and determine the main thermal effects accompanying this process. As a result of the studies carried out, it was found that KCl additives practically do not affect the decomposition of hemicelluloses, but they shift the maximum decomposition of the cellulose peak in the direction of decreasing temperature to 340.9 °C compared to untreated bark (357.5 °C). K3PO4 promotes the simultaneous decomposition of hemicelluloses and cellulose in the temperature range with a maximum of 277.8 °C. In both cases, the additions of KCl and K3PO4 reduce the maximum rate of weight loss, which leads to a higher yield of carbon residues: the yield of char from the original fir bark is 28.2%, in the presence of K3PO4 and KCl it is 52.6 and 65.0%, respectively. Using the thermogravimetric analysis in the inert atmosphere, the reaction mechanism has been established within the Criado model. It is shown that the LB, SB, and CB thermal decomposition can be described by a two-dimensional diffusion reaction (D2) in a wide range (up to 0.5) of conversion values followed by the reactions with orders of three (R3). The thermal decomposition of the FB occurs somewhat differently. The diffusion mechanism (D2) of the FB thermal decomposition continues until a conversion value of 0.6. As the temperature increases, the degradation of the FB sample tends to R3. It has been found by the thermogravimetric analysis that the higher cellulose content prevents the degradation of wood. The bark wood pyrolysis activation energy has been calculated within the Coats–Redfern and Arrhenius models. The activation energies obtained within these models agree well and can be used to understand the complexity of biomass decomposition.

Keywords