Ophthalmology Science (Dec 2021)

Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening

  • Tharindu De Silva, PhD,
  • Gopal Jayakar, BS,
  • Peyton Grisso, BS,
  • Nathan Hotaling, PhD,
  • Emily Y. Chew, MD,
  • Catherine A. Cukras, MD, PhD

Journal volume & issue
Vol. 1, no. 4
p. 100060

Abstract

Read online

Purpose: Retinal toxicity resulting from hydroxychloroquine use manifests photoreceptor loss and disruption of the ellipsoid zone (EZ) reflectivity band detectable on spectral-domain (SD) OCT imaging. This study investigated whether an automatic deep learning-based algorithm can detect and quantitate EZ loss on SD OCT images with an accuracy comparable with that of human annotations. Design: Retrospective analysis of data acquired in a prospective, single-center, case-control study. Participants: Eighty-five patients (168 eyes) who were long-term hydroxychloroquine users (average exposure time, 14 ± 7.2 years). Methods: A mask region-based convolutional neural network (M-RCNN) was implemented and trained on individual OCT B-scans. Scan-by-scan detections were aggregated to produce an en face map of EZ loss per 3-dimensional SD OCT volume image. To improve the accuracy and robustness of the EZ loss map, a dual network architecture was proposed that learns to detect EZ loss in parallel using horizontal (horizontal mask region-based convolutional neural network [M-RCNNH]) and vertical (vertical mask region-based convolutional neural network [M-RCNNV]) B-scans independently. To quantify accuracy, 10-fold cross-validation was performed. Main Outcome Measures: Precision, recall, intersection over union (IOU), F1-score metrics, and measured total EZ loss area were compared against human grader annotations and with the determination of toxicity based on the recommended screening guidelines. Results: The combined projection network demonstrated the best overall performance: precision, 0.90 ± 0.09; recall, 0.88 ± 0.08; and F1 score, 0.89 ± 0.07. The combined model performed superiorly to the M-RCNNH only model (precision, 0.79 ± 0.17; recall, 0.96 ± 0.04; IOU, 0.78 ± 0.15; and F1 score, 0.86 ± 0.12) and M-RCNNV only model (precision, 0.71 ± 0.21; recall, 0.94 ± 0.06; IOU, 0.69 ± 0.21; and F1 score, 0.79 ± 0.16). The accuracy was comparable with the variability of human experts: precision, 0.85 ± 0.09; recall, 0.98 ± 0.01; IOU, 0.82 ± 0.12; and F1 score, 0.91 ± 0.06. Automatically generated en face EZ loss maps provide quantitative SD OCT metrics for accurate toxicity determination combined with other functional testing. Conclusions: The algorithm can provide a fast, objective, automatic method for measuring areas with EZ loss and can serve as a quantitative assistance tool to screen patients for the presence and extent of toxicity.

Keywords