BMC Biology (Aug 2018)

Real-time tracking of complex ubiquitination cascades using a fluorescent confocal on-bead assay

  • Joanna Koszela,
  • Nhan T. Pham,
  • David Evans,
  • Stefan Mann,
  • Irene Perez-Pi,
  • Steven Shave,
  • Derek F. J. Ceccarelli,
  • Frank Sicheri,
  • Mike Tyers,
  • Manfred Auer

DOI
https://doi.org/10.1186/s12915-018-0554-z
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background The ubiquitin-proteasome system (UPS) controls the stability, localization and/or activity of the proteome. However, the identification and characterization of complex individual ubiquitination cascades and their modulators remains a challenge. Here, we report a broadly applicable, multiplexed, miniaturized on-bead technique for real-time monitoring of various ubiquitination-related enzymatic activities. The assay, termed UPS-confocal fluorescence nanoscanning (UPS-CONA), employs a substrate of interest immobilized on a micro-bead and a fluorescently labeled ubiquitin which, upon enzymatic conjugation to the substrate, is quantitatively detected on the bead periphery by confocal imaging. Results UPS-CONA is suitable for studying individual enzymatic activities, including various E1, E2, and HECT-type E3 enzymes, and for monitoring multi-step reactions within ubiquitination cascades in a single experimental compartment. We demonstrate the power of the UPS-CONA technique by simultaneously following ubiquitin transfer from Ube1 through Ube2L3 to E6AP. We applied this multi-step setup to investigate the selectivity of five ubiquitination inhibitors reportedly targeting different classes of ubiquitination enzymes. Using UPS-CONA, we have identified a new activity of a small molecule E2 inhibitor, BAY 11-7082, and of a HECT E3 inhibitor, heclin, towards the Ube1 enzyme. Conclusions As a sensitive, quantitative, flexible, and reagent-efficient method with a straightforward protocol, UPS-CONA constitutes a powerful tool for interrogation of ubiquitination-related enzymatic pathways and their chemical modulators, and is readily scalable for large experiments.

Keywords