Inventions (Feb 2019)
Skeleton-Based Human Action Recognition through Third-Order Tensor Representation and Spatio-Temporal Analysis
Abstract
Given the broad range of applications from video surveillance to human⁻computer interaction, human action learning and recognition analysis based on 3D skeleton data are currently a popular area of research. In this paper, we propose a method for action recognition using depth sensors and representing the skeleton time series sequences as higher-order sparse structure tensors to exploit the dependencies among skeleton joints and to overcome the limitations of methods that use joint coordinates as input signals. To this end, we estimate their decompositions based on randomized subspace iteration that enables the computation of singular values and vectors of large sparse matrices with high accuracy. Specifically, we attempt to extract different feature representations containing spatio-temporal complementary information and extracting the mode-n singular values with regards to the correlations of skeleton joints. Then, the extracted features are combined using discriminant correlation analysis, and a neural network is used to recognize the action patterns. The experimental results presented use three widely used action datasets and confirm the great potential of the proposed action learning and recognition method.
Keywords