Environmental Health (May 2024)

Long-term exposure to transportation noise and diabetes mellitus mortality: a national cohort study and updated meta-analysis

  • Danielle Vienneau,
  • Benedikt Wicki,
  • Benjamin Flückiger,
  • Beat Schäffer,
  • Jean Marc Wunderli,
  • Martin Röösli

DOI
https://doi.org/10.1186/s12940-024-01084-0
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Long-term exposure to transportation noise is related to cardio-metabolic diseases, with more recent evidence also showing associations with diabetes mellitus (DM) incidence. This study aimed to evaluate the association between transportation noise and DM mortality within the Swiss National Cohort. Methods During 15 years of follow-up (2001–2015; 4.14 million adults), over 72,000 DM deaths were accrued. Source-specific noise was calculated at residential locations, considering moving history. Multi-exposure, time-varying Cox regression was used to derive hazard ratios (HR, and 95%-confidence intervals). Models included road traffic, railway and aircraft noise, air pollution, and individual and area-level covariates including socio-economic position. Analyses included exposure-response modelling, effect modification, and a subset analysis around airports. The main findings were integrated into meta-analyses with published studies on mortality and incidence (separately and combined). Results HRs were 1.06 (1.05, 1.07), 1.02 (1.01, 1.03) and 1.01 (0.99, 1.02) per 10 dB day evening-night level (Lden) road traffic, railway and aircraft noise, respectively (adjusted model, including NO2). Splines suggested a threshold for road traffic noise (~ 46 dB Lden, well below the 53 dB Lden WHO guideline level), but not railway noise. Substituting for PM2.5, or including deaths with type 1 DM hardly changed the associations. HRs were higher for males compared to females, and in younger compared to older adults. Focusing only on type 1 DM showed an independent association with road traffic noise. Meta-analysis was only possible for road traffic noise in relation to mortality (1.08 [0.99, 1.18] per 10 dB, n = 4), with the point estimate broadly similar to that for incidence (1.07 [1.05, 1.09] per 10 dB, n = 10). Combining incidence and mortality studies indicated positive associations for each source, strongest for road traffic noise (1.07 [1.05, 1.08], 1.02 [1.01, 1.03], and 1.02 [1.00, 1.03] per 10 dB road traffic [n = 14], railway [n = 5] and aircraft noise [n = 5], respectively). Conclusions This study provides new evidence that transportation noise is associated with diabetes mortality. With the growing evidence and large disease burden, DM should be viewed as an important outcome in the noise and health discussion.

Keywords