Crop Journal (Apr 2024)
OsWRKY65 enhances immunity against fungal and bacterial pathogens in rice
Abstract
Diverse bacterial and fungal pathogens attack plants, causing biotic stress and severe yield losses globally. These losses are expected to become more serious as climate change improves conditions for many pathogens. Therefore, identifying genes conferring broad-spectrum disease resistance and elucidating their underlying mechanisms provides important resources for plant breeding. WRKY transcription factors affect plant growth and stress responses. However, the functions of many WRKY proteins remain to be elucidated. Here, we demonstrated the role of rice (Oryza sativa) WRKY group III transcription factor OsWRKY65 in immunity. OsWRKY65 localized to the nucleus and acted as transcriptional repressor. Genetic and molecular functional analyses showed that OsWRKY65 increases resistance to the fungal pathogen Fusarium fujikuroi through downregulation of GA signaling and upregulation of JA signaling. Moreover, OsWRKY65 modulated the expression of the key genes that confer susceptibility or resistance to Xanthomonas oryzae pv. oryzae to enhance immunity against the pathogen. In particular, OsWRKY65 directly bound to the promoter region of OsSWEET13 and repressed its expression. Taken together, our findings demonstrate that the OsWRKY65 enhances resistance to fungal and bacterial pathogens in rice.