Poultry Science (Mar 2024)

Role of Nrf2/HO-1 pathway on inhibiting activation of ChTLR15/ChNLRP3 inflammatory pathway stimulated by E. tenella sporozoites

  • Bingrong Bai,
  • Qiuju Liu,
  • Rui Kong,
  • Zhipeng Jia,
  • Hang Chen,
  • Wenjing Zhi,
  • Biao Wang,
  • Chunli Ma,
  • Dexing Ma

Journal volume & issue
Vol. 103, no. 3
p. 103445

Abstract

Read online

ABSTRACT: The aim of this study is to explore whether Nrf2 antioxidant pathway negatively regulates the ChTLR15/NLRP3 inflammatory pathway stimulated by Eimeria tenella infection. Firstly, levels of molecules in the Nrf2/HO-1 pathway in DF-1 cells pre-treated with an optimized dose of Corilagine or probiotics Levilactobacillus brevis 23017 were quantified using real-time PCR (qRT-PCR) and Western blot. Then, DF-1 cells pre-treated with Corilagine or L. brevis 23017 were stimulated with E. tenella sporozoites, and mRNA levels of molecules in Nrf2/HO-1 and ChTLR15/NLRP3 pathways, protein levels of p-Nrf2, Nrf2, HO-1, ChTLR15 and ChNLRP3, levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were quantified. Further, expression level of Nrf2 and ChTLR15 in DF-1 cells was knocked down by RNA interfering (RNAi) method, and target cells were pre-treated with Corilagine or L. brevis 23017, followed by stimulation with E. tenella sporozoites, and the expression levels of key molecules in Nrf2/HO-1 and ChTLR15/NLRP3 pathways were quantified. The results showed that mRNA and protein levels of key molecules in the Nrf2/HO-1 pathway in DF-1 cells was significantly upregulated after pretreating with 15 μM Corilagine and supernatant of L. brevis 23017. After stimulating with E. tenella sporozoites, levels of molecules in the ChTLR15/NLRP3 pathway, levels of MDA and ROS in DF-1 cells pre-treated with 15 μM Corilagine or bacterial supernatant were all significantly down-regulated. The results from the knock-down experiment also displayed that Corrigine and L. brevis 23017 inhibited the activation of the ChTLR15/ChNLRP3 inflammatory pathway stimulated by E. tenella sporozoites through activating Nrf2/HO-1 antioxidant pathway. This study provides new ideas for the development of novel anticoccidial products.

Keywords