BMC Musculoskeletal Disorders (Jul 2020)

MicroRNA-410-3p modulates chondrocyte apoptosis and inflammation by targeting high mobility group box 1 (HMGB1) in an osteoarthritis mouse model

  • Hong Pan,
  • Huming Dai,
  • Linzhi Wang,
  • Silong Lin,
  • Yuefeng Tao,
  • Yi Zheng,
  • Renyi Jiang,
  • Fan Fang,
  • Yifan Wu

DOI
https://doi.org/10.1186/s12891-020-03489-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Osteoarthritis (OA) is the most prevalent type of arthritis, which commonly involves inflammation in the articular cartilage in OA pathogenesis. MicroRNAs (miRNAs) play essential roles in the regulation and pathophysiology of various diseases including OA. MiR-410-3p has been demonstrated to mediate inflammatory pathways, however, the regulatory functions of miR-410-3p in OA remain largely unknown. Methods The regulations of miR-410-3p were investigated in OA. Mouse primary chondrocytes and mouse in vivo models were used. The expression levels of miR-410-3p and HMGB1 were measured by qPCR. The transcription activity of NF-κB was assessed by luciferase reporter assay. MTT assay was performed to assess cellular proliferation. Cell apoptosis was evaluated with the Fluorescein Isothiocyanate (FITC) Annexin V assay. Expression levels of proteins were determined by Western blot. Results The results demonstrated that miR-410-3p was markedly downregulated in articular cartilage tissues as well as in lipopolysaccharide (LPS)-treated chondrocytes in OA mice. In addition, upregulation of miR-410-3p markedly inhibited LPS-induced apoptosis of chondrocytes. The results also demonstrated that the high mobility group box 1 (HMGB1) was a target of miR-410-3p. LPS-induced upregulated expression of HMGB1 significantly suppressed expression of miR-410-3p. Furthermore, upregulation of miR-410-3p markedly inhibited HMGB1 expression, the nuclear factor (NF)-kB activity and pro-inflammatory cytokines production. Taken together, the results suggested that miR-410-3p targeted HMGB1 and modulated chondrocytes apoptosis and inflammation through the NF-κB signaling pathway. Conclusions These findings provide insights into the potential of miR-410-3p/ HMGB1 as therapeutic targets for OA treatment.

Keywords