PLoS ONE (Jan 2021)

Microfluidics sorting enables the isolation of an intact cellular pair complex of CD8+ T cells and antigen-presenting cells in a cognate antigen recognition-dependent manner.

  • Soichiro Kuwabara,
  • Yoshihiko Tanimoto,
  • Mie Okutani,
  • Meng Jie,
  • Yasunari Haseda,
  • Yumi Kinugasa-Katayama,
  • Taiki Aoshi

DOI
https://doi.org/10.1371/journal.pone.0252666
Journal volume & issue
Vol. 16, no. 6
p. e0252666

Abstract

Read online

Adaptive immune responses begin with cognate antigen presentation-dependent specific interaction between T cells and antigen-presenting cells. However, there have been limited reports on the isolation and analysis of these cellular complexes of T cell-antigen-presenting cell (T/APC). In this study, we successfully isolated intact antigen-specific cellular complexes of CD8+ T/APC by utilizing a microfluidics cell sorter. Using ovalbumin (OVA) model antigen and OT-I-derived OVA-specific CD8+ T cells, we analyzed the formation of antigen-specific and antigen-non-specific T/APC cellular complexes and revealed that the antigen-specific T/APC cellular complex was highly stable than the non-specific one, and that the intact antigen-specific T/APC complex can be retrieved as well as enriched using a microfluidics sorter, but not a conventional cell sorter. The single T/APC cellular complex obtained can be further analyzed for the sequences of T cell receptor Vα and Vβ genes as well as cognate antigen information simultaneously. These results suggested that this approach can be applied for other antigen and CD8+ T cells of mice and possibly those of humans. We believe that this microfluidics sorting method of the T/APC complex will provide useful information for future T cell immunology research.