Experimental Results (Jan 2020)
Heteronuclear Cross-Relaxation under Dynamic Nuclear Polarization in Nicotine and Caffeine
Abstract
Dynamic nuclear polarization (DNP) is a technique in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) which leads to sensitivity enhancement and helps to overcome the issue of low polarization in detected nuclei. Recent research showed, that methyl groups, which show active reorientation dynamics and cause heteronuclear cross relaxation at typical DNP temperatures around 100 K, may be used as a pinpoint source of polarization for selective and site-specific probing. In this study, we investigated the cross-relaxation behavior of methyl groups in nicotine and caffeine under DNP. These effects could be useful for investigating receptor/ligand binding.
Keywords