Molecules (May 2024)

Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions

  • Ya-Zhi Chen,
  • Ying-Chun He,
  • Li Yan,
  • Wei Zhao,
  • Biao Wu

DOI
https://doi.org/10.3390/molecules29112445
Journal volume & issue
Vol. 29, no. 11
p. 2445

Abstract

Read online

Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract Li2SO4 solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li+ extraction selectivity at 2-fold over Na+ and 12.5-fold over K+. The driving force underpinning selective lithium extraction is due to the combined interactions of Li+-SO42− electrostatics and the ion–dipole interaction of the lithium–receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation.

Keywords