Heliyon (Jun 2024)

Development and evaluation of a disulfidoptosis-related lncRNA index for prognostication in clear cell renal cell carcinoma

  • Renhui Guan,
  • You Zuo,
  • Qinglong Du,
  • Aijing Zhang,
  • Yijian Wu,
  • Jianguo Zheng,
  • Tongrui Shi,
  • Lin Wang,
  • Hui Wang,
  • Nengwang Yu

Journal volume & issue
Vol. 10, no. 12
p. e32294

Abstract

Read online

Background: This study introduces a novel prognostic tool, the Disulfidoptosis-Related lncRNA Index (DRLI), integrating the molecular signatures of disulfidoptosis and long non-coding RNAs (lncRNAs) with the cellular heterogeneity of the tumor microenvironment, to predict clinical outcomes in patients with clear cell renal cell carcinoma (ccRCC). Methods: We analyzed 530 tumor and 72 normal samples from The Cancer Genome Atlas (TCGA), employing k-means clustering based on disulfidoptosis-associated gene expression to stratify ccRCC samples into prognostic groups. lncRNAs correlated with disulfidoptosis were identified and used to construct the DRLI, which was validated by Kaplan-Meier and receiver operating characteristic curves. We utilized single-cell deconvolution analysis to estimate the proportion of immune cell types within the tumor microenvironment, while the ESTIMATE and TIDE algorithms were employed to assess immune infiltration and potential response to immunotherapy. Results: The Disulfidoptosis-Related lncRNA Index (DRLI) effectively stratified ccRCC patients into high and low-risk groups, significantly impacting survival outcomes (P < 0.001). High-risk patients, marked by a unique lncRNA profile associated with disulfidoptosis, faced worse prognoses. Single-cell analysis revealed marked tumor microenvironment heterogeneity, especially in immune cell makeup, correlating with patient risk levels. In prognostic predictions, DRLI outperformed traditional clinical indicators, achieving AUC values of 0.779, 0.757, and 0.779 for 1-year, 3-year, and 5-year survival in the training set, and 0.746, 0.734, and 0.750 in the validation set. Notably, while the constructed nomogram showed exceptional predictive capability for short-term prognosis (AUC = 0.877), the DRLI displayed remarkable long-term predictive accuracy, with its AUC value reaching 0.823 for 10-year survival, closely approaching the nomogram's performance. Conclusions: The study introduces the DRLI as a groundbreaking molecular stratification tool for ccRCC, enhancing prognostic precision and potentially guiding personalized treatment strategies. This advancement is particularly significant in the context of long-term survival predictions. Our findings also elucidate the complex interplay between disulfidoptosis, lncRNAs, and the immune microenvironment in ccRCC, offering a comprehensive perspective on its pathogenesis and progression. The DRLI and the nomogram together represent significant strides in ccRCC research, highlighting the importance of molecular-based assessments in predicting patient outcomes.

Keywords