Nature Communications (Jun 2022)

Optimised weight programming for analogue memory-based deep neural networks

  • Charles Mackin,
  • Malte J. Rasch,
  • An Chen,
  • Jonathan Timcheck,
  • Robert L. Bruce,
  • Ning Li,
  • Pritish Narayanan,
  • Stefano Ambrogio,
  • Manuel Le Gallo,
  • S. R. Nandakumar,
  • Andrea Fasoli,
  • Jose Luquin,
  • Alexander Friz,
  • Abu Sebastian,
  • Hsinyu Tsai,
  • Geoffrey W. Burr

DOI
https://doi.org/10.1038/s41467-022-31405-1
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Device-level complexity represents a big shortcoming for the hardware realization of analogue memory-based deep neural networks. Mackin et al. report a generalized computational framework, translating software-trained weights into analogue hardware weights, to minimise inference accuracy degradation.