PLoS ONE (Jan 2014)

Sildenafil citrate for prophylaxis of nephropathy in an animal model of contrast-induced acute kidney injury.

  • D Adam Lauver,
  • E Grant Carey,
  • Ingrid L Bergin,
  • Benedict R Lucchesi,
  • Hitinder S Gurm

DOI
https://doi.org/10.1371/journal.pone.0113598
Journal volume & issue
Vol. 9, no. 11
p. e113598

Abstract

Read online

Contrast-induced acute kidney injury (CIAKI) is one of the commonest complications associated with contrast media (CM). Although the exact etiology of CIAKI remains unclear, one hypothesis involves vasoconstriction of afferent arterioles resulting in renal ischemia. Increased renal blood flow, therefore, might represent an attractive target for the treatment of CIAKI. In this study we evaluated the protective effects of the phosphodiesterase type 5 (PDE5) inhibitor, sildenafil citrate, in a rabbit model of CIAKI. New Zealand white rabbits were used due to their susceptibility to CIAKI. To evaluate the effects of sildenafil, the drug was administered before CM infusion and repeatedly throughout the remainder of the experiment (6 mg/kg, p.o.). Animals were sacrificed after 48 hours and kidneys were prepared for histological evaluation. Intravenous administration of CM produced marked kidney injury. Serum creatinine concentrations were elevated within two hours of the infusion and remained elevated for the duration of the experiment. Histological evaluation of the kidneys revealed significant tubular necrosis. The effects of the CM were dose dependent. Treatment with sildenafil was associated with lesser degree of histological injury, attenuation in markers of acute kidney injury (48 hour creatinine 1.54±0.21 versus 4.42±1.31 mg/dl, p<0.05) and reduction in electrolyte derangement (percent change in serum K+ at 48 hours 2.55±3.80% versus 15.53±4.47%, p<0.05; serum Na+ at 48 hours -0.14±0.26% versus -1.97±1.29%, p = 0.20). The results suggest a possible role for PDE5 inhibitors in the treatment of CIAKI and warrant further evaluation to determine the exact mechanism of protection.