Mathematics (Dec 2023)
Dual-Graph-Regularization Constrained Nonnegative Matrix Factorization with Label Discrimination for Data Clustering
Abstract
NONNEGATIVE matrix factorization (NMF) is an effective technique for dimensionality reduction of high-dimensional data for tasks such as machine learning and data visualization. However, for practical clustering tasks, traditional NMF ignores the manifold information of both the data space and feature space, as well as the discriminative information of the data. In this paper, we propose a semisupervised NMF called dual-graph-regularization-constrained nonnegative matrix factorization with label discrimination (DCNMFLD). DCNMFLD combines dual graph regularization and prior label information as additional constraints, making full use of the intrinsic geometric and discriminative structures of the data, and can efficiently enhance the discriminative and exclusionary nature of clustering and improve the clustering performance. The evaluation of the clustering experimental results on four benchmark datasets demonstrates the effectiveness of our new algorithm.
Keywords