Heliyon (Feb 2024)
DPY30 knockdown suppresses colorectal carcinoma progression via inducing Raf1/MST2-mediated apoptosis
Abstract
Colorectal Carcinoma (CRC) is one of the most common malignant tumors of the digestive tract, with a high mortality rate. DPY30 is one of the core subunits of the histone methyltransferase complex, which was involved in many cancer processes. However, the role of DPY30 in the occurrence and progression of CRC remains unclear. In this study, we sought to evaluate the role and mechanism of DPY30 in CRC cells apoptosis. Here, we identified that knockdown of DPY30 significantly inhibited the HT29 and HCT116 cells proliferation in vitro. Moreover, the knockdown of DPY30 significantly increased the apoptosis rate and promoted the expression of apoptosis-related proteins in CRC cells. Meanwhile, DPY30 knockdown promoted CRC cells apoptosis through endogenous programmed death and in a caspase activation-dependent manner. Furthermore, RNA-seq analysis revealed that the action of DPY30 is closely related to the apoptosis biological processes, and screened its potential effectors Raf1. Mechanistically, DPY30 downregulation promotes MST2-induced apoptosis by inhibiting Raf1 transcriptional activity through histone H3 lysine 4 trimethylation (H3K4me3). In vivo experiments showed that DPY30 was correlated with Raf1 in nude mouse subcutaneous xenografts tissues significantly. Clinical colorectal specimens further confirmed that overexpression of DPY30 in malignant tissues was significantly correlated with Raf1 level. The vital role of the DPY30/Raf1/MST2 signaling axis in the cell death and survival rate of CRC cells was disclosed, which provides potential new targets for early diagnosis and clinical treatment of CRC.