Sensors (Nov 2024)
A Composite Pulse Excitation Technique for Air-Coupled Ultrasonic Detection of Defects in Wood
Abstract
To overcome the problems of the low signal-to-noise ratio and poor performance of wood ultrasonic images caused by ring-down vibrations during the ultrasonic quality detection of wood, a composite pulse excitation technique using a wood air-coupled ultrasonic detection system is proposed. Through a mathematical analysis of the output of the ultrasonic transducer, the conditions necessary for implementing composite pulse excitation were analyzed and established, and its feasibility was verified through COMSOL simulations. Firstly, wood samples with knot and pit defects were used as experimental samples. We refined the parameters for the composite pulse excitation technique by conducting A-scan measurements on both defective and non-defective areas of the samples. Moreover, two stepper motors were employed to control the path for C-scan imaging to detect wood defects. The experiment results showed that the composite pulse excitation technique significantly enhanced the precision of nondestructive ultrasonic testing for wood defects compared to the traditional single-pulse excitation method. This technique successfully achieved precise detection and location of pit defects, with a detection accuracy rate of 90% for knot defects.
Keywords