Journal of Chemistry (Jan 2022)

Identification of Secondary Metabolites from Mexican Plants with Antifungal Activity against Pathogenic Candida Species

  • Nancy A. Vázquez-López,
  • Gustavo Cruz-Jiménez,
  • Armando Obregón-Herrera,
  • Estela Ruiz-Baca,
  • Mario Pedraza-Reyes,
  • Everardo López-Romero,
  • Mayra Cuéllar-Cruz

DOI
https://doi.org/10.1155/2022/8631284
Journal volume & issue
Vol. 2022

Abstract

Read online

In the last three decades, invasive fungal infections caused by Candida species have become an important public health problem, because they are associated with high rates of morbidity and mortality in immunocompromised and hospitalized patients. The diagnosis and treatment of candidiasis are difficult and usually inefficient. Accordingly, a diversity of available drugs, currently employed to attack candidiasis, frequently induce resistance in patients promoting toxicity due to long-term treatments. Therefore, development of accurate diagnoses and novel antifungals is of high priority to improve life’s quality and expectancy of individuals infected with this pathogen. Plants are invaluable sources of new biologically active compounds. Among the plants used in Mexico in traditional herbolary medicine which have empirically been demonstrated to have antifungal activity are Pedilanthus tithymaloides, Thymus vulgaris, and Ocimum basilicum. In the present study, we analyzed whether these plants contain metabolites with antifungal activity against five Candida species. The extracts from the different plant organs were obtained by macerating them in ethyl alcohol or hexane and filtering. The obtained extracts were preserved in amber flasks at 4°C until used. The minimum inhibitory concentrations (MICs) of the active compound were determined by a microdilution assay. In addition, the following secondary metabolites were identified: linalool (3,7-dimethylocta-1,6-dien-3-ol), eugenol (4-allyl-2-methoxyphenol), limonene (1-methyl-4-(1-methylethenyl)-cyclohexene), and borneol ([(2R)-1,7,7-trimethyl-2-bicyclo[2.2.1]heptanyl] formate). All these compounds were found in the three plants, traditionally used in everyday life, and proved to be effective against Candida species and therefore a viable alternative to conventional antifungals.