Medicina (Sep 2024)
Deciphering the Role of Maternal Microchimerism in Offspring Autoimmunity: A Narrative Review
Abstract
Feto-maternal microchimerism is the bidirectional transfer of cells through the placenta during pregnancy that can affect the health of both the mother and the offspring, even in childhood or adulthood. However, microchimerism seems to have different consequences in the mother, who already has a developed immune system, than in the fetus, which is vulnerable with immature defense mechanisms. Studies have shown that the presence of fetal microchimeric cells in the mother can be associated with reduced fetal growth, pre-eclampsia, miscarriage, premature birth, and the risk of autoimmune disease development in the future. However, some studies report that they may also play a positive role in the healing of maternal tissue, in cancer and cardiovascular disease. There are few studies in the literature regarding the role of maternal microchimeric cells in fetal autoimmunity. Even fewer have examined their association with the potential triggering of autoimmune diseases later in the offspring’s life. The objectives of this review were to elucidate the mechanisms underlying the potential association between maternal cells and autoimmune conditions in offspring. Based on our findings, several hypotheses have been proposed regarding possible mechanisms by which maternal cells may trigger autoimmunity. In Type 1 diabetes, maternal cells have been implicated in either attacking the offspring’s pancreatic β-cells, producing insulin, differentiating into endocrine and exocrine cells, or serving as markers of tissue damage. Additionally, several potential mechanisms have been suggested for the onset of neonatal lupus erythematosus. In this context, maternal cells may induce a graft-versus-host or host-versus-graft reaction in the offspring, function as effectors within tissues, or contribute to tissue healing. These cells have also been found to participate in inflammation and fibrosis processes, as well as differentiate into myocardial cells, potentially triggering an immune response. Moreover, the involvement of maternal microchimeric cells has been supported in conditions such as juvenile idiopathic inflammatory myopathies, Sjögren’s syndrome, systemic sclerosis, biliary atresia, and rheumatoid arthritis. Conversely, no association has been found between maternal cells and celiac disease in offspring. These findings suggest that the role of maternal cells in autoimmunity remains a controversial topic that warrants further investigation.
Keywords