Sensors (Feb 2022)

Interictal Spike and Loss of Hippocampal Theta Rhythm Recorded by Deep Brain Electrodes during Epileptogenesis

  • Xiaoxuan Fu,
  • Youhua Wang,
  • Abdelkader Nasreddine Belkacem,
  • Yingxin Cao,
  • Hao Cheng,
  • Xiaohu Zhao,
  • Shenghua Chen,
  • Chao Chen

DOI
https://doi.org/10.3390/s22031114
Journal volume & issue
Vol. 22, no. 3
p. 1114

Abstract

Read online

Epileptogenesis is the gradual dynamic process that progressively led to epilepsy, going through the latent stage to the chronic stage. During epileptogenesis, how the abnormal discharges make theta rhythm loss in the deep brain remains not clear. In this paper, a loss of theta rhythm was estimated based on time–frequency power using the longitudinal electroencephalography (EEG), recorded by deep brain electrodes (e.g., the intracortical microelectrodes such as stereo-EEG electrodes) with monitored epileptic spikes in a rat from the first region in the hippocampal circuit. Deep-brain EEG was collected from the period between adjacent sporadic interictal spikes (lasting 3.56 s—35.38 s) to the recovery period without spikes by videos while the rats were performing exploration. We found that loss of theta rhythm became more serious during the period between adjacent interictal spikes than during the recovery period without spike, and during epileptogenesis, more loss was observed at the acute stage than the chronic stage. We concluded that the emergence of the interictal spike was the direct cause of loss of theta rhythm, and the inhibitory effect of the interictal spike on ongoing theta rhythm was persistent as well as time dependent during epileptogenesis. With the help of the intracortical microelectrodes, this study provides a temporary proof of interictal spikes to produce ongoing theta rhythm loss, suggesting that the interictal spikes could correlate with the epileptogenesis process, display a time-dependent feature, and might be a potential biomarker to evaluate the deficits in theta-related memory in the brain.

Keywords