Nuclear Energy and Technology (Dec 2022)
Investigation of algorithms for suppressing xenon oscillations in a VVER-1200 reactor
Abstract
Read online Read online Read online
This paper presents the results of numerical studies of various algorithms for suppression of xenon offset and power distribution oscillations in the core of a VVER-1200 reactor. The purpose of the research is to select an algorithm that minimizes the amount of liquid radioactive wastes during water exchange in the primary circuit of a nuclear power plant. For this, several algorithms for xenon oscillations suppression were considered. The first algorithm considered was an algorithm for suppression of xenon oscillations, which uses regulation due to AWP only, without utilization of any additional regulation. The second algorithm considered was an algorithm based on the use both AWP and boron regulation. In this algorithm suppression of xenon oscillations was carried out with the help of accelerated initiation of the work of the AWP by changing the boric acid concentration with constant second circuit pressure of the NPP and by utilization of the second control rods group. Last algorithm considered was algorithm based on the use of temperature control for accelerated initiation of the work of the AWP. In this algorithm, xenon oscillations suppression was carried out by changing coolant temperature at the reactor inlet caused by pressure change in the secondary circuit in the normal operation margins, and by involving the second group of control rods. It was shown that the best way to suppress xenon offset and power distribution oscillations in terms of minimization of radioactive liquid wastes amount is the algorithm with accelerated initiation of the AWP due to temperature regulation, with elimination of temperature regulation after minimizing of current axial offset value deviation from the nominal one.