Journal of Neuroinflammation (May 2018)

Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome

  • Bo Gao,
  • Yu Wu,
  • Yuan-Jian Yang,
  • Wei-Zu Li,
  • Kun Dong,
  • Jun Zhou,
  • Yan-Yan Yin,
  • Da-Ke Huang,
  • Wen-Ning Wu

DOI
https://doi.org/10.1186/s12974-018-1199-0
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Epilepsy is a common neurological disorder and is not well controlled by available antiepileptic drugs (AEDs). Inflammation is considered to be a critical factor in the pathophysiology of epilepsy. Sinomenine (SN), a bioactive alkaloid with anti-inflammatory effect, exerts neuroprotective activity in many nervous system diseases. However, little is known about the effect of SN on epilepsy. Methods The chronic epilepsy model was established by pentylenetetrazole (PTZ) kindling. Morris water maze (MWM) was used to test spatial learning and memory ability. H.E. staining and Hoechst 33258 staining were used to evaluate hippocampal neuronal damage. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA) kits. Results SN (20, 40, and 80 mg/kg) dose-dependently disrupts the kindling acquisition process, which decreases the seizure scores and the incidence of fully kindling. SN also increases the latency of seizure and decreases the duration of seizure in fully kindled rats. In addition, different doses of SN block the hippocampal neuronal damage and minimize the impairment of spatial learning and memory in PTZ kindled rats. Finally, PTZ kindling increases the expression of NLRP1 inflammasome complexes and the levels of inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α, which are all attenuated by SN in a dose- dependent manner. Conclusions SN exerts anticonvulsant and neuroprotective activity in PTZ kindling model of epilepsy. Disrupting the kindling acquisition, which inhibits NLRP1 inflammasome-mediated inflammatory process, might be involved in its effects.

Keywords