Information (Sep 2022)

From Text Representation to Financial Market Prediction: A Literature Review

  • Saeede Anbaee Farimani,
  • Majid Vafaei Jahan,
  • Amin Milani Fard

DOI
https://doi.org/10.3390/info13100466
Journal volume & issue
Vol. 13, no. 10
p. 466

Abstract

Read online

News dissemination in social media causes fluctuations in financial markets. (Scope) Recent advanced methods in deep learning-based natural language processing have shown promising results in financial market analysis. However, understanding how to leverage large amounts of textual data alongside financial market information is important for the investors’ behavior analysis. In this study, we review over 150 publications in the field of behavioral finance that jointly investigated natural language processing (NLP) approaches and a market data analysis for financial decision support. This work differs from other reviews by focusing on applied publications in computer science and artificial intelligence that contributed to a heterogeneous information fusion for the investors’ behavior analysis. (Goal) We study various text representation methods, sentiment analysis, and information retrieval methods from heterogeneous data sources. (Findings) We present current and future research directions in text mining and deep learning for correlation analysis, forecasting, and recommendation systems in financial markets, such as stocks, cryptocurrencies, and Forex (Foreign Exchange Market).

Keywords