Journal of Translational Medicine (Nov 2024)

Mendelian randomization analyses support causal relationships between gut microbiome and longevity

  • Shu Chen,
  • Wei Chen,
  • Xudong Wang,
  • Sheng Liu

DOI
https://doi.org/10.1186/s12967-024-05823-2
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Gut microbiome plays a significant role in longevity, and dysbiosis is indeed one of the hallmarks of aging. However, the causal relationship between gut microbiota and human longevity or aging remains elusive. Methods Our study assessed the causal relationships between gut microbiome and longevity using Mendelian Randomization (MR). Summary statistics for the gut microbiome were obtained from four genome-wide association study (GWAS) meta-analysis of the MiBioGen consortium (N = 18,340), Dutch Microbiome Project (N = 7738), German individuals (N = 8956), and Finland individuals (N = 5959). Summary statistics for Longevity were obtained from Five GWAS meta-analysis, including Human healthspan (N = 300,447), Longevity (N = 36,745), Lifespans (N = 1,012,240), Parental longevity (N = 389,166), and Frailty (one of the primary aging-linked physiological hallmarks, N = 175,226). Results Our findings reveal several noteworthy associations, including a negative correlation between Bacteroides massiliensis and longevity, whereas the genus Subdoligranulum and Alistipes, as well as species Alistipes senegalensis and Alistipes shahii, exhibited positive associations with specific longevity traits. Moreover, the microbial pathway of coenzyme A biosynthesis I, pyruvate fermentation to acetate and lactate II, and pentose phosphate pathway exhibited positive associations with two or more traits linked to longevity. Conversely, the TCA cycle VIII (helicobacter) pathway consistently demonstrated a negative correlation with lifespan and parental longevity. Conclusions Our findings of this MR study indicated many significant associations between gut microbiome and longevity. These microbial taxa and pathways may potentially play a protective role in promoting longevity or have a suppressive effect on lifespan.