Materials (Sep 2021)

Residual TRM-to-Concrete Bond after Freeze–Thaw Cycles

  • Paraskevi D. Askouni,
  • Catherine (Corina) G. Papanicolaou

DOI
https://doi.org/10.3390/ma14185438
Journal volume & issue
Vol. 14, no. 18
p. 5438

Abstract

Read online

In the present work, the effect of various freeze–thaw cycles (namely, 0, 10, 30, 50, 60, and 70) on the residual bond characteristics of textile reinforced mortar (TRM)-to-concrete was experimentally examined. The TRM consisted of a carbon dry fiber textile embedded in a cement-based matrix. Two mortar types were used as the matrix: a normal-weight and a lightweight one sharing the same hydraulic powders but different aggregates (limestone and pumice sand, respectively). The single-lap/single-prism set up was applied after the specimens underwent hygro-thermal treatment (according to ASTM C 666-Procedure B). Failure was due to the sleeve fibers rupturing the load aligned yarns or textile slippage from the mortar for an exposure period ranging between 0 and 60 cycles and to TRM debonding from the substrate for 70 cycles. Increasing cycles resulted in the intensification of partial interlaminar debonding phenomena and the weakening of the textile-to-matrix bond, with lightweight mortar being more prone to these effects. In the absence of a commonly accepted standardized method for the assessment of the freeze–thaw resistance of cement-based composites, the criterion for the termination of the freeze–thaw sequence was the number of cycles inferring a shift in failure mode (from fiber rupture/fiber slippage to TRM debonding from the substrate).

Keywords