Asian-Australasian Journal of Animal Sciences (Mar 2016)

Effect of Dietary Beta-Glucan on the Performance of Broilers and the Quality of Broiler Breast Meat

  • Sun Hee Moon,
  • Inyoung Lee,
  • Xi Feng,
  • Hyun Yong Lee,
  • Jihee Kim,
  • Dong Uk Ahn

DOI
https://doi.org/10.5713/ajas.15.0141
Journal volume & issue
Vol. 29, no. 3
pp. 384 – 389

Abstract

Read online

A total of 400, one day-old commercial broiler chicks were divided into five diet groups (negative control, positive control group with 55 ppm Zn-bacitracin, 15 ppm β-glucan, 30 ppm β-glucan, and 60 ppm β-glucan) and fed for six weeks. Ten broilers were allotted to each of 40 floor pens. Eight floor pens were randomly assigned to one of the 5 diets. Each diet was fed to the broilers for 6 weeks with free access to water and diet. The survival rate, growth rate, feed efficiency, and feed conversion rate of the broilers were calculated. At the end of the feeding trial, the birds were slaughtered, breast muscles deboned, and quality parameters of the breast meat during storage were determined. The high level of dietary β-glucan (60 ppm) showed better feed conversion ratio and survival rate than the negative control. The survival rate of 60 ppm β-glucan-treated group was the same as that of the antibiotic-treated group, which showed the highest survival rate among the treatments. There was no significant difference in carcass yield, water holding capacity, pH, color, and 2-thiobarbituric acid reactive substances values of chicken breast meat among the 5 treatment groups. Supplementation of 60 ppm β-glucan to broiler diet improved the survival rate and feed conversion rate of broilers to the same level as 55 ppm Zn-bacitracin group. The result indicated that use of β-glucan (60 ppm) can be a potential alternative to antibiotics to improve the survival and performance of broilers. However, dietary β-glucan showed no effects on the quality parameters of chicken breast meat.

Keywords