Physical Review Research (Nov 2020)

Singularities in Hessian element distributions of amorphous media

  • Vishnu V. Krishnan,
  • Smarajit Karmakar,
  • Kabir Ramola

DOI
https://doi.org/10.1103/PhysRevResearch.2.042025
Journal volume & issue
Vol. 2, no. 4
p. 042025

Abstract

Read online Read online

We show that the distribution of elements H in the Hessian matrices associated with amorphous materials exhibit singularities P(H)∼|H|^{γ} with an exponent γ<0, as |H|→0. We exploit the rotational invariance of the underlying disorder in amorphous structures to derive these exponents exactly for systems interacting via radially symmetric potentials. We show that γ depends only on the degree of smoothness n of the potential of interaction between the constituent particles at the cut-off distance, independent of the details of interaction in both two and three dimensions. We verify our predictions with numerical simulations of models of structural glass formers. Finally, we show that such singularities affect the stability of amorphous solids, through the distributions of the minimum eigenvalue of the Hessian matrix.